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Abstract

The study investigates the sources of fine organic aerosol (OA) in the boreal forest,
based on measurements including both filter sampling (PM1) and online methods and
carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007.
Two aerosol mass spectrometers (Q-AMS, ToF-AMS) were employed to measure on-5

line air mass concentrations of major non-refractory aerosol species, while the water
extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR)
spectroscopy for organic functional group characterization of the polar organic fraction
of the aerosol. AMS and NMR spectra were processed separately by non-negative
factorization algorithms, in order to apportion the main components underlying the10

submicrometer organic aerosol composition and depict them in terms of both mass
fragmentation patterns and functional group compositions.

The NMR results supported the AMS speciation of oxidized organic aerosol (OOA)
into two main fractions, which could be generally labelled as more and less oxidized
organics. The more oxidized component was characterized by a mass spectrum dom-15

inated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic
and aliphatic backbones highly substituted with oxygenated functional groups (car-
bonyls/carboxyls and hydroxyls). Such component, contributing on average 50 % of
the OA mass throughout the observing period, was associated with pollution outbreaks
from the Central Europe. The less oxidized component showed features consistent with20

less oxygenated aerosols and was enhanced in concomitance with air masses origi-
nating from the North-to-West sector, in agreement with previous investigations con-
ducted at this site. NMR factor analysis was able to separate two distinct components
under the less oxidized fraction of OA. One of these NMR-factors was associated to
the formation of terrestrial biogenic secondary organic aerosol (BSOA), based on the25

comparison with spectral profiles obtained from laboratory experiments of terpenes
photo-oxidation. The second NMR factor associated with western air masses was
linked to biogenic marine sources, and was enriched in low-molecular weight aliphatic
amines. Such findings provide evidence of at least two independent sources originating
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biogenic organic aerosols in Hyytiälä by oxidation and condensation mechanisms: re-
active terpenes emitted by the boreal forest and compounds of marine origin, with the
latter relatively more important when predominantly polar air masses reach the site.

This study is an example of how spectroscopic techniques, such as proton NMR, can
add functional group specificity for certain chemical features (like aromatics) of OA with5

respect to AMS. They can therefore be profitably be exploited to complement aerosol
mass spectrometric measurements in organic source apportionment studies.

1 Introduction

Atmospheric aerosol particles directly impact air quality, visibility and the radiation bal-
ance of the Earth, which in turn contributes to regulating the climate system on both10

regional and global scales (Ravishankara, 2005; IPCC, 2007). Since organic com-
pounds constitute a large fraction of submicrometer particles mass on the global scale,
up to 90 % (Kanakidou et al., 2005; Zhang et al., 2007), their accurate quantification
and source apportionment are necessary in order to determine their role in the above
environmental issues and define efficient abatement strategies.15

Secondary organic aerosols (SOA), formed by gas-to-particle conversion of oxidized
vapors, and other oxygenated organic aerosols formed by chemical ageing of existing
particles (Fuzzi et al., 2005), are expected to contribute to a large fraction of total or-
ganic particulate mass outside urban areas (Baltensperger et al., 2005; Lanz et al.,
2007). Nevertheless, current estimates of global SOA production remain inaccurate.20

They vary by over 2 orders of magnitude, because they are not well constrained by or-
ganic source apportionment studies (Simpson et al., 2007). The importance of biogenic
sources is thought to be significant, given that global emissions of biogenic volatile or-
ganic compounds (BVOCs) are up to ten times greater than those from anthropogenic
sources (Calvert, 2002; Atkinson and Arey, 2003; Guenther et al., 1995). It is estimated25

that biogenic volatile organic compound (BVOC) oxidation represents the largest SOA
global source, ranging from 12 to 70 Tg yr−1 (Hallquist et al., 2009).
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Combined experimental and modelling studies have investigated the formation of
SOA from the photo-oxidation of several simple VOCs, such as alkyl-benzenes and
terpenoids, obtaining a considerable amount of data for controlled (laboratory) condi-
tions (Surratt et al., 2010; Paulot et al., 2009; Rickard et al., 2009; Cao et al., 2008; Ng
et al., 2007; Song et al., 2007; Johnson et al., 2004). The evaluation of SOA formation5

mechanisms in the field remains challenging because of multiple contributing sources,
variable oxidant concentrations and composition, and the contribution of background
gases and aerosols (De Gouw and Jimenez, 2009).

The elucidation of SOA chemical composition in ambient air, believed to encompass
several hundreds of thousands of individual compounds (Goldstein and Galbally, 2007),10

represents a major challenge for state-of-the-art analytical techniques. The recovery
of gas-chromatographic/mass spectrometric (GC/MS) techniques with respect to to-
tal aerosol organic carbon (OC) is normally below 15 % (Cahill et al., 2006). Hence,
organic source apportionment methods based on GC/MS techniques rely on the ex-
istence of source-specific molecular markers that are stable under atmospheric con-15

ditions (Schauer et al., 1996; Claeys et al., 2004). However, the actual stability of
important molecular markers, such as levoglucosan, has been questioned by recent
observations (Capes et al., 2008).

An alternative approach is based on the integral chemical features of OC (e.g. mass
fragments, functional groups, elemental ratios, isotopic ratios, ions, etc.) rather than20

on individual species. Such a bulk approach has been proposed by using Fourier
transform infrared (FTIR) (Russell et al., 2010, 2011) and proton nuclear magnetic
resonance (1H-NMR) spectroscopies (Decesari et al., 2007, 2011). Most widespread
applications exploit aerosol mass spectrometry (AMS) coupled with multivariate statis-
tical analysis methods for the decomposition of the mass spectra timeline into con-25

tributions of “factors”, which are considered as proxies for chemical classes of or-
ganic compounds sharing common formation processes. Several multivariate statis-
tical analysis methods have been applied to deconvolve AMS spectra of ambient or-
ganic particles into a few major components, e.g. multi component analysis (MCA)
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(Zhang et al., 2005a, b, 2007), and positive matrix factorization (PMF) (Lanz et al.,
2007; Ulbrich et al., 2009; Paatero et al., 1994). The most commonly identified
PMF-AMS factors have been named hydrocarbon-like organic aerosol (HOA) and oxy-
genated organic aerosol (OOA), and are thought to be strongly linked to primary and
secondary organic aerosol (POA and SOA), respectively. In some environments, OOA5

are further split into different types, including a more oxidized type, or OOA1, and a
less oxidized one, OOA2, also called low-volatility and semivolatile oxidized organic
aerosols, LV-OOA and SV-OOA, on the basis of parallel measurements of particle
volatility and chemical composition (Jimenez et al., 2009).

Even if important insights on OA composition have been obtained so far, they are10

often method-dependent, i.e. affected by the sensitivity of the employed methodology
to specific chemical features of aerosol OC. Since each technique has its own strengths
and weaknesses, a complementary approach is highly recommended.

The present manuscript explores the variability of organic aerosol composition dur-
ing an intensive EUCAARI (Kulmala et al., 2009; Kerminen et al., 2010) field study15

held in spring 2007 in Hyytiälä (Finland), employing 1H-NMR and AMS characteri-
zation methods. The NMR analysis complements here the AMS characterization by
providing information on the functionalities, which are not speciated well by the AMS.
On the other hand, AMS permits OA to be analysed at a higher time resolution. For
the attribution of spectral fingerprints to natural and anthropogenic sources, use was20

made of data acquired during reaction chamber experiments performed in the SAPHIR
facility, Jülich.

2 Experimental

Submicrometer aerosol particles were sampled during a one-month campaign in spring
2007 at the Finnish Station for Measuring Forest Ecosystem–Atmosphere Relations25

(SMEAR II, Hari and Kulmala, 2005; http://www.atm.helsinki.fi/SMEAR/) located in
Hyytiälä (61◦51′ N, 24◦17′ E, 181 m a.s.l.). This forestry station is located in the middle
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of a more than 40-year old Scots pine stand (Pinus Sylvestris L.), which homoge-
neously surrounds the site for several hundreds meters. Tampere is the largest neigh-
bouring city and is situated about 60 km S-SW. Measurements were carried out from
27 March to 17 May 2007. However, the present work focuses on the collection period
of PM1 filter samples analyzed by 1H-NMR spectroscopy, i.e. the days from 29 March5

to 19 April.

2.1 Aerosol measurements

Atmospheric particles were sampled by a suite of co-located online instruments
throughout the campaign. A twin Differential Mobility Particle Sizer (DMPS) continu-
ously monitored the size distribution of submicrometer aerosol particles and its evo-10

lution with a 10 min time resolution (Aalto et al., 2001). Real-time measurements of
the concentrations of non-refractory PM1 aerosol organic matter and inorganic ions
including sulphate, nitrate, ammonium and chloride were performed by two aerosol
mass spectrometers running in parallel: (a) an Aerodyne Quadrupole Aerosol Mass
Spectrometer (Q-AMS), and (b) a High Resolution Time-of-Flight Aerosol Mass Spec-15

trometer (ToF-AMS). A thorough description of the instruments and associated calibra-
tion and operation procedures is provided elsewhere (Jayne et al., 2000; Allan et al.,
2003; Jimenez et al., 2003; Alfarra et al., 2004; De Carlo et al., 2006; Canagaratna
et al., 2007). During the campaign, the ToF-AMS suffered from some technical prob-
lems thus the Q-AMS data are used here for the absolute concentrations. However,20

because of the higher spectral resolution, the ToF-AMS provided useful data for the
interpretation of the presented data set.

The Q-AMS measurements started in early March and measurements continued up
to the end of June, although here we focus on the NMR data taken in the period from
29 March to 19 April. Before 4 April the Q-AMS was operated by alternating between25

mass spectrum (MS) and particle time of flight (pTOF) modes (Jimenez et al., 2003),
and saving data every ten minutes, and then, between 4 and 6 April, it was prepared
for particle flux measurements (Nemitz et al., 2008). In practice this meant that 30 min
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of every hour was spent on flux measurements, and during the remaining 30 min the
Q-AMS was alternating between MS, pTOF and jump mass spectrum (JMS) modes
(Crosier et al., 2007). Because only one sixth of the time was spent on mass concen-
tration (the MS mode) measurements, the Q-AMS data increased in noise. Therefore,
they are presented here as 30 min averages.5

The so-obtained Q-AMS total mass concentrations compare fairly well with total par-
ticle volume calculated from particle size distributions (DMPS). However, it seems that
the AMS/DMPS ratio changed during the 4–6 April break, when the AMS was prepared
for flux measurements, being about 0.4 and 0.8 before and after the break, respectively.
The most likely explanation for this is a bending of the particle inlet, which may have10

led to the loss of particles. Ionization efficiency changes are unlikely, because the air
beam signal did not change during this period.

The concentrations of major ionic species in submicrometer particles were also de-
termined by a Particle-into-Liquid Sampler (PILS; Metrohm Peak Inc) coupled with two
ion chromatographs (IC; Dionex ICS-2000) and using a virtual impactor (VI; Loo and15

Cork, 1988) with a cut-off size of 1.3 µm prior to the PILS-ICs system (Orsini et al.,
2003).

A high volume sampler (HiVol) working at 850 l min−1 and configured to remove par-
ticles with aerodynamic diameter larger than 1 µm was employed from 29 March to
19 April to collect fine particles on quartz-fiber filters (12 cm diameter, QMA grade).20

The quartz-fiber filters were washed with Milli-Q water and heated for 1 h at 800 ◦C
before sampling to reduce blank values. After sampling, lasting on average 10 h, the
collected PM1 filters were stored in a fridge at 4 ◦C until analysis.

Total Carbon (TC) content was measured directly from small sub-samples of the
HiVol filters (about 2 % of sampled area) by evolved gas analysis. Measurements were25

performed by a Multi N/C 2100 analyser (Analytik Jena, Germany) equipped with a
module for solid samples, which are exposed to increasing temperature (up to 950 ◦C)
in a pure oxygen carrier gas. Under these conditions all carbonaceous matter (organic,
carbonate and elemental carbon) is converted into CO2 (Gelencser et al., 2000) and
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TC is measured as total evolved CO2 by a non-dispersive infrared (NDIR) analyser.
The remaining portion of each HiVol filter was extracted with deionized ultra-pure water
(Milli-Q) in a sonication bath for 1 h and the water extract was filtered on PTFE mem-
branes (pore size: 0.45 µm) in order to remove suspended particles. Aliquots of the wa-
ter extracts were used to determine the water-soluble organic carbon (WSOC) content5

by a Multi N/C 2100 total organic carbon analyser (Analytik Jena, Germany) equipped
with a module for liquid samples. For each sample, parallel measurements of car-
bonate carbon and total organic carbon were carried out: the difference between total
soluble carbon and carbonate carbon results in WSOC (Rinaldi et al., 2007). The dif-
ference between TC and WSOC and carbonate carbon resulted in the water-insoluble10

carbon (WINC).
The remaining aliquots of the water extracts were dried under vacuum and re-

dissolved in deuterium oxide (D2O) for functional group characterization by proton-
Nuclear Magnetic Resonance (1H-NMR) spectroscopy (Decesari et al., 2000). The
1H-NMR spectra were acquired at 400 MHz with a Varian Mercury 400 spectrometer in15

5 mm probes. Sodium 3-trimethylsilyl-(2,2,3,3-d4) propionate (TSP-d4) was prevalently
used as referred internal standard, adding 50 µl of a TSP-d4 0.05 % (w/w) solution in
D2O (1.5 µmol H belonging to the standard in the probe). In some cases, methanol
(MeOH) was used as internal standard (0.5 µmol H) instead of TSP-d4. 1H-NMR spec-
troscopy in protic solvents provides the speciation of hydrogen atoms bound to carbon20

atoms. On the basis of the range of frequency shifts (the chemical shift, ppm) in which
the signals occur, they can be attributed to different H-C –containing functional groups.

2.2 Factor analysis of AMS and NMR spectral data sets

The time-dependent organic mass spectra from the Q-AMS measurements were se-
lected for the Positive Matrix Factorization (PMF). The analysis was performed applying25

the PMF Evaluation Tool (Ulbrich et al., 2009) based on version 4.2 of PMF2 algorithm
(Paatero and Tapper, 1994; Paatero, 1997). Standard data pre-treatment, applying
minimum error criteria and down weighting weak variables and m/z 44 related peaks,
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was performed as described in Ulbrich et al. (2009). The PMF analysis turned out
to be quite difficult due to noisy data series, a leak of air signal (m/z 28) to organic
m/z 29, an electronic interference problem manifested as a transient series of peaks
with m/z 10 difference, and relatively low variations in organic oxidation state, at least
compared with the 2005 data series (Raatikainen et al., 2010). Zero-averaged noise5

was not in itself a problem, merely decreasing the relative error (Q/Qexp) to a value
much lower than one. An additional explanation for the low Q/Qexp is that original
single ion noise may have been overestimated. To avoid finding a noise factor, the
m/z 29 peak was down weighted by a factor of five. In order to try to remove the
periodic electronic interference explicitly, test calculations were performed where one10

factor was allowed to vary without the non-negativity constraint. This interference was
found to vary around zero. To investigate numerical stability, the PMF solution space
was explored by varying seeds, numbers of factors (1–5), and rotational parameter
FPEAK. After this processing, it was very clear that a good solution could not be found
for more than two factors. Indeed, a two-component PMF analysis, where the factors15

were identified as OOA1 and OOA2 provided reasonable solutions having fairly iden-
tical concentration time series and Q/Qexp values for FPEAK values from −0.4 to 0.4.
The main difference between these solutions is the fraction of m/z 44 peak (f44) of
OOA2 ranging from 0.00 to 0.08, for FPEAK greater than −0.08 and lower than −0.16,
respectively. An average solution with OOA2 f44=0.04 and FPEAK=−0.12 was thus20

selected as the final solution, being zero f44 values not expected.
Like the Q-AMS, the ToF-AMS was able to resolve two factors reliably: OOA1 and

OOA2. The additional variance provided by higher-order solutions did not show any
distinctly new features in the profile spectra and were deemed to be more indicative
of technical issues with the instrument, such as subtle nonlinearities introduced by25

thresholding or signal saturation. It should be noted that PMF analysis has been per-
formed successfully on datasets subsequently obtained with the same instrument (Al-
lan et al., 2010; Robinson et al., 2010). Therefore, the lack of additional factors should
be taken as indicative of the lack of variation in total mass terms within the dataset,
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further supporting the conclusion that OOA1 and OOA2 were the only significant fac-
tors present, limited by the short time period (two weeks) of Tof-AMS sampling. In the
ToF-AMS case, a solution with FPEAK=−0.5 was chosen, as non-negative values re-
sulted in solutions where the f44 value of OOA2 was zero. It should also be borne in
mind that many choices of FPEAK would probably produce valid solutions, while nega-5

tive FPEAK values tend to produce factors whose time series are more distinct but with
more similar mass spectra and vice versa for the positive values (Allan et al., 2010). In
the light of the findings of Morgan et al. (2010) and Ng et al. (2010), a solution where
the f44 value was non-zero was deemed more chemically meaningful. In this instance,
the OOA1 factor had an f44 of 0.17 and an f43 of 0.09, while OOA2 had an f44 of 0.0910

and an f43 of 0.12.
The NMR spectral dataset was also processed by factor analysis (FA) methodolo-

gies, in order to establish contributions and spectral profiles of major components of
WSOC. It should be noted that the carbon fraction insoluble in water (WINC) was not
analyzed by NMR in this study. The raw NMR spectra were subjected to several pre-15

processing steps prior to FA, in order to avoid any misleading source of variability. All
the spectra were corrected for the baseline drift using a polynomial fit of the baseline
in blank samples. After accurate alignment of the spectra using the internal standards
as references for the chemical shift scale (Tsp-d4 =0 ppm; methanol=3.36 ppm), the
peaks of contaminants identified in blank samples were systematically removed from20

the dataset. In order to limit the effect of possible small variations in NMR peak po-
sition, the original resolution of the spectra was decreased by binning over 0.03 ppm
and 0.01 ppm intervals, that provided matrices of 400 and 200 points, respectively.
The resulting spectral dataset was processed using three different factor analysis algo-
rithms, namely: (1) the PMF 3.0v software using the multilinear engine algorithm pro-25

vided by US Environmental Protection Agency; (2) the non-negative matrix factorization
(N-NMF) software with projected gradient bound-constrained optimization (Lin et al.,
2007) (hereafter “N-NMF-GRA”); and (3) the multivariate curve resolution-alternating
least squares (MCR-ALS) software (Tauler et al., 1995).
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Since PMF also requires uncertainties, an uncertainty matrix was derived here from
the noise to signal ratios of the NMR spectra. Moreover, due to constrains to the num-
ber of variables in the PMF, this algorithm could be applied only to low-resolution spec-
tra, 200 points, while N-NMR-GRA and MCR-ALS were employed for the factorization
of both 200 and 400 points spectra.5

3 Results and discussion

3.1 Concentrations of main submicrometer aerosol components

3.1.1 On-line measurements results

Between 29 March and 19 April, the air concentrations of the major aerosol species
experienced large variations (Fig. 1). The highest organics loads were observed at the10

beginning of the period, from 29 to 30 March, when sulphate, nitrate and ammonium
concentrations also peaked, as registered by the AMS and by the PILS-IC systems.
Medium to relatively high concentrations were recorded in other two episodes on 10–11
and 15–17 April. During the remaining days, the concentrations of the above aerosol
components were very low: 0.49±0.54 µg m−3 (organic matter), 0.21±0.14 µg m−3

15

(sulphate), 0.05±0.05 µg m−3 (nitrate) and 0.06±0.07 µg m−3 (ammonium) based on
the Q-AMS measurements. On the same days of background conditions, sodium and
chloride ions showed highest concentrations, as measured by the PILS-IC system
(Fig. 1b). The good correlation observed between sodium and chloride concentrations
indicates that they originate mainly from sea salt.20

The PM1 potassium ion, often used as stable tracer for biomass burning plumes
(Andreae, 1983; Ma et al., 2003), showed very high levels in the first period, between
28 and 30 March, and occurred in significant concentrations only sporadically in the
remaining part of the campaign (Fig. 1c).

In order to evaluate whether these concentration time trends coincided with25

air masses of particular origin, the NOAA HYSPLIT model (Hybrid Single-Particle
22630
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Lagrangian Integrated Trajectory, http://ready.arl.noaa.gov/HYSPLIT.php) was used to
calculate back-trajectories (BTs) every day from 29 March to 19 April. A plot of the
48 h backward BTs at 500 m above ground level and calculated every 4 h, is reported
in Fig. 2. The analysis of the BTs showed that higher PM1 sea salt levels were regis-
tered when the site was influenced by air masses originated from the Norwegian Sea5

and from the Arctic, while the highest aerosol mass concentrations of sulphate, nitrate,
ammonium and organics occurred in concomitance with continental air masses, which
is consistent with previous observations at the Hyytiälä station (Allan et al., 2006; Cav-
alli et al., 2006; Tunved et al., 2006; Raatikainen et al., 2010). Figure 3 summarizes
the chemical composition patterns averaged over periods corresponding to the main10

BTs typologies observed, i.e. marine/Arctic (m/A), continental/modified marine (C/mm),
continental from the West-to-NorthWest sector (C(W-NW)) and continental from the
South-to-SouthWest sector (C(S-SW)).

The particle size distributions as measured by the DMPS (Fig. 4) appear as well
to fit this preliminary classification of the observation period based on BT typologies.15

Several new particle formation episodes were detected throughout the observation pe-
riod, except for the first days when C(S-SW) prevailed and only accumulation mode
particles were observed. Freshly formed particles were clearly a significant source of
Aitken mode particles during the experiment, even in moderately polluted periods as
C/mm and C(W-NW).20

3.1.2 Off-line analysis results

The PM1 total carbonaceous (TC) mass concentrations spanned from less than 1 up
to 8.5 µg C m−3, as shown by filter measurements (Fig. 5, upper panel). The sam-
pled carbonaceous mass was primarily constituted by polar, oxygenated compounds,
while the water-soluble organics fraction (WSOC) being generally high, accounted on25

average for more than 70 % of the total carbon.
It should be noticed that on the basis of the OM: OC ratios reported in literature (Rus-

sell et al., 2003) and those extrapolated by the AMSs for this data set, the measured
22631
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WSOC has to be multiplied by a coefficient included between 1.8 and 2.00 to be con-
verted in water-soluble organic matter (WSOM).

The Q-AMS organics concentrations, averaged over the filter sampling times, are
also reported in Fig. 5 for comparison. Even if well correlating throughout the whole
period (R =0.93), Q-AMS OM concentrations were quite lower than filter water-soluble5

organic matter, still pointing to some particles loss.
The functional group distributions of the NMR-detected WSOC are also reported in

the lower panel of Fig. 5. Since 1H-NMR spectroscopy is mainly sensitive to protons
attached to carbon atoms (i.e. H-C bonds), H/C ratios based on the stoichiometry ex-
pected for each functional group (Tagliavini et al., 2006), were used to convert the con-10

centrations of organic non-exchangeable hydrogen atoms into organic carbon concen-
trations. The main functional groups identified include: (i) “alkyls” (HC-C<), i.e. aliphatic
groups bound to saturated carbon atoms, such as methyls/methylenes/methynes;
(ii) oxygen-containing aliphatic groups, like “carbonyls/carboxyls” (HC-C=O), i.e. alkyls
adjacent to unsaturated carbon atoms, and like “hydroxyls” (HC-O), i.e. alkyls directly15

attached to oxygen atoms such as alcohols, ethers/esters, and (iii) “aromatics” (H-Ar).
In addition, nitrogen- and sulfur-containing groups, such as “amines” (HC-N), and sul-
fonic groups (HC-SO3, such as methane sulfonic acid, “MSA”, were detected.

On average, the WSOC fraction comprising NMR-detectable organic carbon atoms
was 50 %. The missing carbon could be due to: (a) the presence of carbons not car-20

rying protons, as in compounds containing highly branched chains or fully substituted
aryls (Moretti et al., 2008), and (b) a fraction of WSOC constituted by semi-volatile
organics that may be lost during the evaporation step prior to the NMR measurement.
Few laboratory tests, consisting in replicated WSOC measurements prior and after the
evaporation step, showed that the carbon fraction due to the evaporation accounted25

in average for less than 30 % of the WSOC mass. Thus it means that overall the de-
tected functional groups represent the major WSOC composition. On the contrary for
the samples collected in the background regime the evaporative losses resulted par-
ticularly increased, reaching up to 70 % of the WSOC mass, indicating a substantial
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contribution of semi-volatile organics in such particles. These observations were also
confirmed by OC measurements performed on a series of back up filters of PM1 sam-
ples collected during the same campaign but at lower time resolution than those used
for this manuscript. Indeed, the ratio of the back up OC up to the front OC resulted
dramatically increased for samples collected when marine air masses prevailed.5

3.2 Oxygenated organic aerosol composition

3.2.1 AMS factors

The time-dependent organic mass spectra recorded by the two AMSs (Q-AMS and
ToF-AMS) were separately processed by the PMF methods as described in the ex-
perimental section, and exploring solutions with 2 up to 5 factors. Two types of oxy-10

genated organic aerosol (OOA) groups, namely OOA1 and OOA2, were particularly
stable within all tested solutions and accounted for most of the organic mass signal in
both datasets. Concerning results from Q-AMS data, the final OOA1 and OOA2 mass
spectra are shown in Fig. 6 and time series in Fig. 7.

The mass spectra of these two OOA components, with the ions at m/z 44 (CO+
2 )15

dominating the OOA type 1 and m/z 43 (mostly C2H3O+) dominating the OOA type 2,
closely match those most commonly isolated in previous studies (Zhang et al., 2007;
Lanz et al., 2007). Overall, they strongly resemble those found at Hyytiälä in spring
2005 (Raatikainen et al., 2010). In the cited studies, the OOA1 represented the more
oxidized, aged organic fraction, and the OOA2 represented the less oxidized, fresher20

secondary organics.
Other commonly found organic groups, such as hydrocarbon-like (HOA) and

biomass burning organic aerosol (BBOA), were not isolated here. On average, the
m/z 57 peak, which is often related to HOA (e.g. Lanz et al., 2007) and also BBOA
(Aiken et al., 2009), is less than 1 % of the total organic signal. There are a few time25

periods with higher m/z 57 mass fractions, however it seem to be too low to be detected
by the PMF method. For comparison, average m/z 44 mass fraction is 11 %.
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Since the unit mass resolution of the Q-AMS prevents an unambiguous identification
of the ions in the mass spectra, within this dataset the oxygen content of the organic
groups was estimated on the basis of the linear fit between oxygen to carbon atomic
ratio (O:C) and their m/z 44 peaks (Aiken et al., 2008). The estimated O:C ratios for
the OOA1 and OOA2 isolated from the Q-AMS dataset were, respectively, 0.73 and5

0.23. These values turned out to be very close to those obtained by Raatikainen, 2010
(i.e. 0.77±0.10 and 0.23±0.08), and were also similar to 0.73 and 0.17 averages from
several observations (Ng et al., 2010).

Unfortunately the ToF-AMS data covered mainly the second half of the campaign,
overlapping with the Q-AMS and NMR data for a limited time interval, with C(W-NW)10

and partially m/A prevailing. Nevertheless the analysis of the high-resolution ToF-AMS
spectra enabled the direct determination of the molecular ratios within this time interval.
Elemental analysis was performed on the W mode high resolution data according to
Aiken et al. (2007, 2008). On average, the H:C ratio was estimated to be 1.36, the O:C
ratio 0.64 and the OM:OC ratio 1.97. No statistically significant variation was found15

within the measurement period. As part of the work of Robinson et al. (2010), the 82
peak was investigated specifically for signs of methylfuran, which was associated with
isoprene SOA in the tropics. While a peak was identified, it was found to be much
smaller compared to tropical datasets, indicating that the process was not significant
in this environment.20

3.2.2 NMR factors

A total of seventeen 1H-NMR spectra at 200 points resolution were subjected to the
factorization models mentioned in the experimental section (PMF, N-NMF-GRA and
MCR-ALS) and the solutions resulting from factors 2 up to 8 were explored. Within all
the models, most of the variance turned out to be explained by a limited number of25

factors, the residual of the order of the baseline noise being for more than 3 factors.
The largest drop in the Q/Qexp ratios was registered between two and three factors, but
additional factors continued to reduce Q/Qexp toward 1 until no strong change in slope
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was observable for more than five factors. Beyond five factors, two or more factors were
found to be strongly correlated, suggesting that the measurements were not adequate
to differentiate additional independent factors. In the following discussion, the analysis
is limited to the most simple and conservative solutions with three and four factors.

Profiles and loadings resulting for 3- and 4-factor solutions are shown in Figs. 85

and 9. Only profiles from a single model (MCR-ALS) are reported for sake of clarity.
Concerning the factor loadings, the values obtained by the three models were generally
convergent, particularly in the three factor case (Fig. 9a). Conversely, the 4-factor case
appears more affected by a certain degree of rotational ambiguity of the models in
splitting the F3 and F4 factors, especially for samples collected on 15 and 16 April10

(Fig. 9b), with better results obtained with higher resolution, 400 points (not shown).
The isolated NMR factors are described as follows.
F1: the first factor (hereinafter referred to as “glycols” factor) is characterized by com-

pounds with hydroxyl (or ether) linkages and n-butyl chains, showing a spectrum similar
to commercial butyl-glycols that, to our knowledge, finds no equivalents in other atmo-15

spheric environments. Such factor contributed randomly to the set of samples (Fig. 9)
but was completely absent in blank samples, thus excluding any filter contaminations
prior/post sampling. Nonetheless positive artefacts or accidental contaminations dur-
ing the sampling cannot be definitely ruled out.

F2: the second factor (hereinafter referred to as “HULIS-containing” factor) has20

spectral features similar to those characterizing samples collected in sites impacted
by anthropogenic emissions (Fig. 10a), and already reported in literature (Decesari
et al., 2000, 2007). In terms of functional group distribution, polluted samples typi-
cally show a more pronounced band of aromatics (visible in the range between 6.5–
8.5 ppm) with respect to samples collected in remote locations. Besides this feature,25

the HULIS-containing factor’s profile retains low but appreciable signals of levoglucosan
(visible in the spectral interval between 3.5–4.5 ppm), a well known atmospheric tracer
for biomass combustion emissions (Simoneit et al., 1999; Nolte et al., 2001). As shown
in Fig. 9, this factor accounted for most of the signal in the 30 March sample, C (S-SW)
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regime, and to a much lesser extent, it contributed to the less polluted samples col-
lected in the final part of the campaign, C(W-NW). Moreover, the concentrations for
this factor were positively correlated (R = 0.99) with those of potassium ion, pointing
again to a mix of combustion sources, i.e. long-range transported pollution/wood burn-
ing products. This is in agreement with recent results from satellite-based data coupling5

aerosol and fires, which assess wildfires in Eastern Europe with significant impacts on
the fine aerosol load even in the Scandinavian region, particularly in April (Barnaba et
al., 2011).

F3: the third factor (hereinafter referred to as “amines” factor) included intense
peaks attributable to low-molecular weight alkyl amines, i.e. diethyl and dimethyl10

amines (DEA, DMA), and to methane-sulphonic acid (MSA), overlapping a broad back-
ground band in the aliphatic region (0.5–4.5 ppm). Such compounds (MSA and di-alkyl
amines) have previously been found by the authors in clean marine OA (Fig. 10b) (Fac-
chini et al., 2008; Decesari et al., 2011). Moreover, this factor accounted mainly for the
OA composition when concentrations reached very low levels during the background15

regime (m/A), but it also contributed to the rise of concentrations during the last days
of the sampling period, C (W-NW). The air mass origin from the Atlantic during the first
two weeks of April, together with the presence of MSA and di-alkyl amines, suggest
that the “amines” factor can be impacted by biogenic marine sources.

F4: the fourth factor (hereinafter referred to as “terpene-SOA-like” factor) is found20

prevalently in the samples collected between 15 and 17 April , C(W-NW) and also, to
a lesser extent, in the 30 March sample (Fig. 9). Unlike the “HULIS-containing” factor
profile, aromatic protons (H-Ar) are scarcely visible in the “terpene-SOA-like” factor,
except for two weak peaks, also present in the “glycols” and “amines” profiles, which
may be due to defective splitting. Besides this, main distinguishing features of this25

factor is the presence of single peaks overlapping the background signal in the region
between 0.7–1.8 ppm which comprises non-fuctionalized alkyls (HC-C), e.g. methyl or
methylene groups. Again, aliphatic alcohols and ethers/esters (HC-O) also contribute
to characterizing the profile of such “terrestrial biogenic” factor in the range of chemical

22636

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/22619/2011/acpd-11-22619-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/22619/2011/acpd-11-22619-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 22619–22662, 2011

Determination of the
biogenic SOA

fraction in the boreal
forest

E. Finessi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

shifts between 3.3–4.5 ppm. By comparing the spectral profile of F4 with reference
1H-NMR spectra of ambient and laboratory-generated water-soluble aerosols, the best
match was found with the BSOA produced in the SAPHIR simulation chamber during
photo-oxidation and ozonolysis of terpene mixtures, representative of VOCs emitted by
conifer tree species (Fig. 10c). In particular, the closest similarity was found with BSOA5

generated with mixtures of monoterpenes (MT) and sesquiterpenes (SQT), including:
α/β-pinene, limonene, ∆3-carene, ocimene, β-caryophyllene and α-farnesene (Finessi
et al., 2011).

3.2.3 Comparison between AMS and NMR factors for OA source attribution

Major components underlying the oxygenated organic aerosol fraction isolated from10

NMR data were compared to those apportioned by AMS and averaged upon filter sam-
pling times (Fig. 11). As explained above, the NMR-factor “glycols” are suspected to
be contaminations, and are excluded from the following analysis. It should be noted
that no filter samples were collected at night-time during the background period, and
therefore the off-line NMR analyses did not account for the nocturnal peaks of OOA215

observed by the AMSs in such conditions.
In order to compare NMR and AMS factor loadings, the concentration metrics used

by the two techniques need to be homogenized, in an attempt to retrieve equivalent
organic mass concentrations from the organic non-exchangeable hydrogen concentra-
tions provided by 1H-NMR analysis. As a first step, water-soluble organic carbon con-20

centrations comprising the NMR factors were derived from hydrogen concentrations
by using factor-specific H/WSOC ratios. The latter were extrapolated from WSOC and
1H-NMR measurements for spectral datasets representative for source types of the
OA of interest to the present study. In particular, H/C molar ratios values of 0.8, 0.9
and 1 were used for the “terpene-SOA-like”, “amines” and “HULIS-containing” NMR-25

factors, respectively, on the basis of the analysis of laboratory terpene SOA samples
(Finessi et al., 2011), marine aerosols in clean air masses sampled at the Irish station
of Mace Head (Decesari et al., 2011), and of samples of biomass burning aerosols
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(Tagliavini et al., 2006). The WSOC concentrations estimated using such H/WSOC
factors account for fully-substituted carbon atoms, which cannot be directly detected
by 1H-NMR analysis. However, the sum of WSOC concentrations derived for the three
factors is still lower than the measured WSOC, probably because of losses of volatile
compounds during sample preparation. Finally, to derive equivalent organic matter5

concentrations, a simple conversion factor of 1.8 was used to convert WSOC load-
ings into water-soluble organic mass concentrations (µg m−3). Along with the NMR-
detected WSOC components, both the unaccounted-WSOC and the WINC fractions
are included in Fig. 11 to facilitate comparison with AMS-detected OM. The conver-
sion coefficients 1.8 and 1.4 were used to derive organic mass concentrations of the10

unaccounted-WSOM and WIOM, respectively.
The OA mass concentrations reconstructed by the two independent techniques

turned out to be in overall agreement, following fairly the same trend throughout the
whole observation period.

Even if the very few time-integrated filter samples cannot account for the great vari-15

ability of OA composition observed by the online methods, when averaging the AMS
factors over the filter sampling times, the OA composition patterns were comparable
to those obtained by off-line measurements. The comparison between the patterns
obtained by the AMS and NMR techniques is facilitated when looking at the averaged
data over each distinct regime and the entire observing period (Figs. 12 and 13).20

Two types of oxygenated organic components attributable to more and less oxi-
dized organics, respectively, appeared particularly stable in all tested solutions used
for factor analysis. They accounted for most of the detected mass in both method-
ologies (Fig. 13) and are attributable to a more and a less oxidized organic fraction.
The more oxidized, aged organic fraction, represented by the AMS OOA1 and by the25

NMR “HULIS-containing” factors, accounted for about 50 % of the detected organic
mass in both cases, when considering the entire period (Fig. 13). This fraction, la-
belled as “more oxidized”, shows a mass spectrum dominated by the m/z 44 (CO+

2 )
peak, and in parallel a NMR spectrum enriched in oxidized functional groups, such as
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carbonyls/carboxyls and hydroxyls. Additionally, it shows high correlation coefficients
with sulphate, ammonium, nitrate and potassium ions, and particularly contributed to
the organic mass during the so-called continental regime from the South-to-SouthWest
sector. Thus, for all the above reasons, it has been linked to transported pollution, in-
cluding wood burning products. By contrast, the second major component, labelled as5

less oxidized, is represented by the AMS OOA2 and by the NMR factors related to bio-
genic OA, and greatly contributed to enhancing the OA mass during the marine/Arctic
and C(W-NW) regimes.

The NMR factor analysis further isolated two distinct components within the a less
oxidized OA fraction, namely the “amines” and “terpene-SOA-like” factors. Their rel-10

ative concentrations appeared strongly dependent on the air mass regime. Indeed,
when prevalently polar air masses reached the site (m/A regime), the NMR analysis
assigned about 50 % of WSOC to the “amines” factor. This was based on similarities
with spectral signatures of aerosol collected in clean marine environments, including
MSA and alkyl amines signals and, therefore could be linked to a biogenic OA source15

of marine origin. By contrast, the “terpene-SOA-like” factor is related to terrestrial sec-
ondary products originating from the gas-to-particle conversion of VOCs emitted by
conifer forests, on the basis of similarities with BSOA formed in chamber experiments
with monoterpenes plus sesquiterpenes. Overall, a significant fraction of WSOC can
be assigned to the terrestrial biogenic factor throughout the whole period (about 30 %),20

indicating a persistent source active in the area around the sampling site. It was also
particularly enriched during the so-called C(W-NW) regime, reaching up to 50 % of
the detected WSOC. The back-trajectories analysis showed that air masses influenc-
ing the site during the C(W-NW) period originated mainly from North West, under-
going a marine to continental transition over the Scandinavian forest area. Thus the25

BSOA enrichment in concomitance to prevailing C(W-NW) is reasonably connected to
the longer time spent by the clean air masses over the Boreal forest with respect to
that spent by the air masses arriving from North. This is consistent with previous in-
vestigations at Hyytiälä observing aerosol properties during the marine-to-continental
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transition (Allan et al., 2006; Cavalli et al., 2006; Tunved et al., 2006; Raatikainen et
al., 2010). Since a few short pollution episodes were still detected during this period,
a higher particle concentration may be also considered as a possible explanation for
the BSOA enhancement with respect to low concentration periods, e.g. by acting as
condensation sink for locally emitted gaseous precursors. However, the same com-5

position patterns are not observed during the C(S-SW) period, when still high particle
concentrations were registered but the air masses originated from Central Europe. In
summary, the longer time spent over the Boreal forest by the air masses reaching the
site within C(W-NW) remains the most plausible explanation of the observed BSOA
enrichment.10

4 Conclusions

Submicrometer organic aerosol characterization was performed in the Finnish forest
environment at Hyytiälä, exploiting parallel AMS and NMR measurements with aim of
source apportionment. The three-week EUCAARI campaign carried out in April 2007
covered different atmospheric conditions and transport patterns, from very clean back-15

ground to fairly polluted regimes. Results from factor analysis applied separately on
AMS and NMR spectral datasets showed that air mass origin had a strong impact on
organic composition, in agreement with findings of previous investigations at this site.
Two types of oxygenated organic components, one more and one less oxidized, ap-
peared to be particularly stable within any tested solution used for the factor analysis20

applied, mostly accounting for the detected mass for both methodologies. The more ox-
idized component, defined as OOA1 for AMS and “HULIS-containing” for NMR, showed
a mass spectrum dominated by the m/z 44 peak and a NMR spectrum enriched in
oxidized functional groups, such as carbonyls/carboxyls and hydroxyls. This com-
ponent correlated clearly with pollution/wood burning outbreaks in Central Europe.25

By contrast, the less oxidized component, showing features consistent with fresher
aerosols, was strongly enhanced in concomitance with air masses originating from the
North to West sector.
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NMR factor analysis further isolated two distinct subcomponents within such less
oxidized OA fraction, that were respectively linked to terrestrial and marine biogenic
sources on the basis of similarities with spectral fingerprints and back-trajectory analy-
sis. Overall, such terrestrial and marine biogenic components contributed equally to OA
mass (about 30 % each) when averaging over the whole observing period, but showed5

relative abundances strongly depending on the North-to-West air-mass transition. In
summary, the findings trace and quantify at least two independent sources originating
biogenic secondary organic aerosols in Hyytiälä through oxidation and condensation
phenomena: a first source involving products of marine origin, which is more important
during low aerosol concentration regimes with predominantly polar air masses, and a10

second source involving reactions of locally emitted terpenes, which becomes more
important with increasing time spent by air masses over the Boreal forest.

The complementary approach exploited here between independent source appor-
tionment methods has proven to give a more complete and accurate picture of organic
aerosol variability, and has provided the opportunity to trace biogenic SOA in the envi-15

ronment.

Acknowledgements. Main part of the work in this paper has been funded with FP6 project
EUCAARI (Contract 34684) and by ACCENT (Atmospheric Composition Change the European
Network of Excellence). This research has received also funding from the Finnish Cultural
Foundation and the Academy of Finland Centre of Excellence program (project no 1118615).20

FMI and University of Helsinki are gratefully acknowledged for the research support at the
Hyytiälä station.
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and Pöschl, U.: Critical assessment of the current state of scientific knowledge, terminology,20

and research needs concerning the role of organic aerosols in the atmosphere, climate, and
global change, Atmos. Chem. Phys., 6, 2017–2038, doi:10.5194/acp-6-2017-2006, 2006.

Gelencser, A., Hoffer, A., Molnar, A., Krivacsy, Z., Kiss, G., and Meszaros, E.: Thermal be-
haviour of carbonaceous aerosol from continental background site, Atmos. Environ., 34,
823–831, 2000.25

Goldstein, A. H. and Galbally, I. E.: Known and unexplored organic constituents in the earth’s
atmosphere, Environ. Sci. Technol., 41, 1514–1521, 2007.

Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Gredel, T., Harley, P., Klinger, L.,
Lerdau, M., Mckay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J.,
and Zimmerman, P.: A: A global model of natural volatile organic compound emissions, J.30

Geophys. Res., 100(D5), 8873–8892, doi:10.1029/94JD02950, 1995.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen,

J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann,

22644

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/22619/2011/acpd-11-22619-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/22619/2011/acpd-11-22619-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/acp-6-2017-2006
http://dx.doi.org/10.1029/94JD02950


ACPD
11, 22619–22662, 2011

Determination of the
biogenic SOA

fraction in the boreal
forest

E. Finessi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W.,
McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D.,
Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic
aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, doi:10.5194/acp-
9-5155-2009, 2009.5

Hari, P. and Kulmala, M.: Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II),
Boreal Environ. Res., 10, 315–322, 2005.

IPCC Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cam-
bridge, 2007.

Jayne, J., Leard, D., Zhang, X., Davidovits, P., Smith, K., Kolb, C., and Worsnop, D.: Devel-10

opment of an aerosol mass spectrometer for size and composition analysis of submicron
particles, Aerosol Sci. Tech., 33, 49–70, 2000.

Jimenez, J., Jayne, J., Shi, Q., Kolb, C., Worsnop, D., Yourshaw, I., Seinfeld, J., Flagan, R.,
Zhang, X., Smith, K., Morris, J., and Davidovits, P.: Ambient aerosol sampling using the Aero-
dyne Aerosol Mass Spectrometer, J. Geophys. Res., 108, 8425, doi:10.1029/2001JD001213,15

2003.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H.,

DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M.,
Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin,
C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn,20

M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J., Huffman, J.
A., Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick,
F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A.,
Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, J.
R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., Wood, E. C.,25

Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of organic
aerosols in the atmosphere, Science, 326, 1525–1529, 2009.

Johnson, D., Jenkin, M. E., Wirtz, K., and Martin-Reviejo, M.: Simulating the formation of sec-
ondary organic aerosol from the photooxidation of aromatic hydrocarbons, Environ. Chem-
istry, 2, 35–48, 2005.30

Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van
Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski,
Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K.,

22645

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/22619/2011/acpd-11-22619-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/22619/2011/acpd-11-22619-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/acp-9-5155-2009
http://dx.doi.org/10.5194/acp-9-5155-2009
http://dx.doi.org/10.5194/acp-9-5155-2009
http://dx.doi.org/10.1029/2001JD001213


ACPD
11, 22619–22662, 2011

Determination of the
biogenic SOA

fraction in the boreal
forest

E. Finessi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling:
a review, Atmos. Chem. Phys., 5, 1053–1123, doi:10.5194/acp-5-1053-2005, 2005.
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Fig. 1. Time-series (µg m−3) of the non-refractory PM1 species measured by Q-AMS (a). Chlo-
ride, sodium, potassium and oxalate ions particle air mass concentrations as detected by the
PILS-IC system (b, c).
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Fig. 2. Back-trajectory plots (48 h backward, 500 m a.g.l. height) obtained by running the HYS-
PLIT model every four hours from 28 March to 21 April. Colours are used for distinct air masses
typologies: marine/Arctic (m/A), Continental/modified marine (C/mm), Continental from the W-
NW sector and Continental from the S-SW sector.
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Fig. 3. PM1 chemical composition (Q-AMS) averaged within the four distinct periods of Fig. 2.
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Fig. 4. Aerosol number size distribution measured by DMPS. Colours coded labels for the BTs
distinct periods shown in Fig. 2 are also reported on the top.
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Fig. 5. Upper panel, PM1 filter samples carbonaceous mass concentrations expressed as total
carbonaceous (black), water-soluble organics in (dark brown) in µg C m−3. Q-AMS organics
conc. (µg m−3) averaged upon filter sampling times are shown in green. The coverage of filter
sampling times by AMS (percentage) is reported by yellow bars. Lower panel, functional groups
distribution of the NMR-detected WSOC.
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Fig. 6. OOA1 and OOA2 mass spectra (Q-AMS).
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Fig. 7. Q-AMS-factors time series. Labels for the observed distinct BTs regimes are reported
under the time x-axis.
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Fig. 8. NMR-factor profiles isolated by applying the MCR-ALS model with a 3-factor solution (a),
and a 4-factor solution (b). All factor profiles are vertically normalized to 1 and are plotted
versus the NMR chemical shifts.
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Fig. 9. NMR-factor loadings generated by the models applied to the low-resolution matrix with
3-factor solution (a) and 4-factor solution (b). Within each factor, distinctive coloured symbols
are used for different models while the black squared symbols represent mean values with
vertical bar as standard deviations. Loadings are expressed as absolute values in nmol H m−3.
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Fig. 10. NMR-factors profiles (MCR-ALS) emerging from the Hyytiala dataset (coloured lines)
overlapped with reference spectra (grey lines). The comparison includes spectral signatures
obtained in other field (a, b) and chamber (c) campaigns. The functional groups patterns (%)
corresponding to each factor are reported on the left.
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Fig. 11. OM apportionment by factorization of AMS- and NMR-data. Upper panel: Q-AMS-
factor contributions averaged upon filter sampling times. Lower panel: unaccounted water-
soluble and insoluble OM classes have been included. No data have been reported for NMR
samples below detection limits. WSOM classes concentrations in µg m−3 have been obtained
by multiplying for 1.8 the corresponding values in µg C m−3 except for WINC where 1.4 as
conversion coefficient has been used.
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Fig. 12. Absolute concentrations (µg m−3) of the Q-AMS OOAs and filters organic components
averaged upon the entire sampling period (upper panel) and each distinct sub-periods (lower
panels).
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Fig. 13. Relative factors abundances (percentage) averaged over the whole observing pe-
riod and over the above-described distinct regimes. Two columns are reported for NMR data
showing the biogenic NMR-factors merged together (a) and separately (b).
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